
Modular Asset Build Assistant

Contents:
1. Introduction

2. Common Variables

3. BP_1DModularBuilder

4. BP_2DModularBuilder

5. BP_3DModularBuilder

6. BP_ComplexModularBuilder

7. BP_StairBuilder

8. BP_PropRandomizer

Introduction:
Thank you for your interest in The Modular Asset Build Assistant! I genuinely hope you can utilize this

set of blueprints to help speed up your level design and building to it’s maximum potential. I developed

these blueprints after using a handful of modular asset packs and realizing how much time I wasted just

tediously trying to line up meshes, even with the help of snapping and the grid system.

At first glance, once you’ve acclimated yourself to the most efficient way of utilizing these blueprints,

you’ll see that the amount of time you save may only be seconds for each individual mesh, however the

true impact on total design time in the long term can be hours if not days of repetitive mesh snapping

depending on the size of your levels.

As a bonus, I’ve also included a blueprint called BP_PropRandomizer, which is a useful tool to use when

you want to distribute random props around the level with varying degrees of randomness. This is useful

for specific use cases that aren’t necessarily handled neatly with the built in foliage tool in Unreal

Engine.

There are quite a few moving parts behind the scenes and as such, some things may be a little difficult

to wrap your head around. I strongly advise going into the demo level and experiment with each

example blueprint to better understand how each setting affects the tiling. If you have any issues or

questions, feel free to reach out to me at:

gamedev@ryanmcfate.com

I’m more than happy to help where I can.

mailto:gamedev@ryanmcfate.com

Common Variables

Attach to Builder (obj ref):
Using the eye dropper, you can snap the currently selected blueprint to another builder blueprint at it’s

connect point.

Attach to Connect (bool):
When marked true, attaching to another builder will attach at the arrow connect point. For most

builders, this is the origin point, however, 1D builders can attach to the end of the last tiled mesh to

allow for easier wall tiling.

[1D][2D][3D][Complex] Mesh Sets (user structs):
Mesh sets are custom structure classes that contain all the information needed to tile modular meshes.

• Active (bool): Toggles whether the mesh is rendered or not.

• StaticMesh (mesh ref): The mesh to be tiled.

• MaterialAssignments (array of user struct): Material Instance and it’s Material Slot Name if the

mesh has the option of different materials.

• Relative Origin Offset (vector): An offset applied to the mesh. Useful when paired with other

meshes whose origin is not the same but needs to be lined up. Usually stays 0,0,0.

• Tile Offset (vector): The distance in units that the mesh tiles in each direction. This vector

represents the size of the mesh in X, Y, and Z. Depending on the direction of the mesh, some of

these values may need to be negative to tile correctly. Blueprint assumes tiling in the positive X

direction.

• Rotation Offset (rotator): A rotational offset for the mesh.

BP_1DModularBuilder

Use Relative Rotation? (bool):
If marked true, tile and rotation

offset are based on the previous

mesh’s location and rotation,

allowing you to make more complex

patterns by leveraging relative

stacking of tiled meshes. If marked

false, the location is calculated using

mesh count and is constrained to

the axis in a linear fashion.

Same Settings, Absolute vs. Relative:

Length (int):
Number of meshes to tile.

Length Axis (User Enum):
Which axis to tile against.

Shared Tile Offset (vector):
Overrides the TileOffset on every

mesh set. This is required for

consistent tiling of all meshes in the

set, which means all meshes in the

set should be the same size. If for

some reason you need to have each

mesh be a different size, consider

using the ComplexBuilder.

Shared Rotation Offset (rotator):
Overrides the RotationOffset on every mesh set. This is required for consistent tiling of all meshes in the

set, which means all meshes in the set should be the same size. If for some reason you need to have

each mesh be a different size, consider using the ComplexBuilder.

BP_2DModularBuilder

Length (int):
Number of meshes to tile on first

axis.

Width (int):
Number of meshes to tile on the

second axis

LW Axis (User Enum):
Which two axes to tile against.

Shared Tile Offset (vector):
Overrides the TileOffset on every

mesh set. This is required for

consistent tiling of all meshes in the

set, which means all meshes in the

set should be the same size. If for

some reason you need to have each

mesh be a different size, consider

using the ComplexBuilder.

Shared Rotation Offset

(rotator):
Overrides the RotationOffset on

every mesh set. This is required for

consistent tiling of all meshes in the

set, which means all meshes in the

set should be the same size. If for

some reason you need to have each

mesh be a different size, consider

using the ComplexBuilder.

BP_3DModularBuilder

Build 3D (User Struct):
Number of meshes in each axis.

Shared Tile Offset (vector):
Overrides the TileOffset on

every mesh set. This is required

for consistent tiling of all

meshes in the set, which means

all meshes in the set should be

the same size. If for some

reason you need to have each

mesh be a different size,

consider using the

ComplexBuilder.

Shared Rotation Offset

(rotator):
Overrides the RotationOffset on

every mesh set. This is required

for consistent tiling of all

meshes in the set, which means

all meshes in the set should be

the same size. If for some

reason you need to have each

mesh be a different size,

consider using the

ComplexBuilder.

BP_ComplexBuilder

Build 3D (User Struct):
Number of meshes in each

axis.

Complex Mesh Set (User

Struct):
The complex mesh set is a

custom array of mesh sets with

named sections. You may add

multiple types of meshes with

different materials to each

array (for example, alternating

colored interior walls under

the “Interior” array). This will

alternate the different meshes

in a pattern. For 2D types like

floors, having 2 meshes will

create a checkerboard pattern

(assuming the floor tiles are

the same size), having more

will create more complex

patterns. This is the only

blueprint type where tile

offsets and rotations are not

constrained to one global value

for each, which allows for

more customized tiling,

however meshes that aren’t

the same size will cause odd

tiling behavior and is usually

not recommended.

BP_StairBuilder

Length (int):
Number of meshes in the tile

set.

Length Axis (user enum):
Which axis to tile.

Shared Tile Offset (vector):
Overrides the TileOffset on the

mesh. The Z value should be

the height of the mesh to

create proper stepping height.

Shared Rotation Offset

(rotator):
Overrides the RotationOffset

on the mesh. The Yaw value

being set to a small angle

creates spiral staircases.

Changing roll and pitch will

allow you to create non-

conventional patterns that

don’t really function as real

stairs and is useful for creating

sculpture-like structures.

BP_PropRandomizer

Refresh (bool):
Refreshes the randomization pattern to get a

different result.

Randomize Mesh? (bool):
If marked true, will randomize the mesh(es) used

from the Prop Meshes array. If marked false, use

the mesh at array index “Mesh Index” of the Prop

Meshes array.

Mesh Index (int):
If RandomizeMesh? is marked false, this is the index

of the mesh in the Prop Meshes array to use.

Doesn’t do anything if RandomizeMesh? is marked

true.

Randomize Rotation? (bool):
If marked true, randomize the rotation of the mesh

on all axes.

Yaw Only Randomize? (bool):
If marked true, only randomized the rotation on

Yaw.

Randomize Scale? (bool):
If marked true, randomize the scale of the mesh

using the Random Scale Bounds minimum and

maximum values.

Randomize Scale Bounds (user struct):
A minimum and maximum value to keep within

when randomizing the scale of meshes.

Spread? (bool):
If marked true, create a spread of prop meshes instead of one singular prop mesh.

Mesh Count (int):
Number of meshes to create. Final number of meshes may be less if AttemptPreventOverlap? Is marked

true.

Normalize Rotation to Surface? (bool):
If marked true, attempt to rotate the mesh so that it appears to lay flat on the surface it is touching.

Good for spreading props across a non-flat or sloped surface.

Radius (float):
Half-size of the area to spread the meshes around. This area is actually a square and not a circle.

Attempt Prevent Overlap? (bool):
If marked true, attempt to prevent spawning meshes if it collides with other prop meshes from the same

blueprint. Needs to be used in conjunction with “Mesh Size Radius” below to estimate the size of the

props because the actual mesh is not used when calculating the size.

Mesh Size Radius (float):
Used in conjunction with Attempt Prevent Overlap, this value is roughly the half size of the largest mesh

used in the prop mesh array pool. This value is used to calculate whether or not meshes will overlap

with each other.

